Volume 38 Issue 3
May  2023
Turn off MathJax
Article Contents
QIN Bing-tao, YU Yong-wei, GE Li-ming, GUO Yuan-guo. Smart Carbon Reduction: The Effect and Mechanism of Digital Economy Development on Urban Carbon Emissions[J]. Journal of Guangdong University of Finance & Economics, 2023, 38(3): 4-23.
Citation: QIN Bing-tao, YU Yong-wei, GE Li-ming, GUO Yuan-guo. Smart Carbon Reduction: The Effect and Mechanism of Digital Economy Development on Urban Carbon Emissions[J]. Journal of Guangdong University of Finance & Economics, 2023, 38(3): 4-23.

Smart Carbon Reduction: The Effect and Mechanism of Digital Economy Development on Urban Carbon Emissions

  • Received Date: 2023-01-14
    Available Online: 2023-07-07
  • Publish Date: 2023-05-28
  • While reshaping China's economic development trajectory in the post-COVID-19 era, digital economy also has a profound impact on China's "dual carbon" process. In this paper, the smart city pilot policy is taken as the proxy variable for the development of digital economy. Based on the panel data of 281 cities at the prefecture level and above in China from 2006 to 2019, the carbon emission reduction effect of smart city construction under the perspective of digital empowerment is empirically investigated by comprehensive use of the differential method, the two-stage three-step method and the spatial differential method. The conclusions show that compared with non-pilot cities, the carbon emissions of pilot smart cities are reduced by 2.8% on average, which means that the construction of smart cities significantly reduces the level of carbon emissions. This conclusion is still valid after a series of robustness tests, such as changing the estimation model and selecting the control group. Mechanism studies show that smart city construction has transformed urban development from the factor and investment-driven to the innovation-driven, and promoted urban low-carbon transformation through digital empowerment to exert energy upgrading effect, life transformation effect and resource allocation effect. The results from quantitative decomposition show that the above mechanism contributed more than 80% of the explanatory effect. Heterogeneity analysis shows that the carbon emission reduction effect of digital economy development is more obvious in large and above scale cities, more developed regions in eastern and southern China, and cities with high endowment of human, financial and physical resources. The spatial effect analysis shows that with the increase of distance threshold, the spillover effect generated by smart city construction is significantly reduced, and the conclusion is still valid after the use of differential spatial Durbin model. This paper not only provides new documentary evidence for the causal relationship between digital economy development and carbon emission governance, but also has important practical significance for exploring how to use digital economy to enable green and low-carbon transition in the post-pandemic period, so as to achieve high-quality economic development.
  • loading
  • [1]
    赵涛, 张智, 梁上坤. 数字经济、创业活跃度与高质量发展——来自中国城市的经验证据[J]. 管理世界, 2020(10): 65-76. doi: 10.3969/j.issn.1002-5502.2020.10.006
    [2]
    ROSENBLOOM D, MARKARD J. A COVID-19 recovery for climate[J]. Science, 2020, 368(6490): 447-447. doi: 10.1126/science.abc4887
    [3]
    GOLDFARB A, TUCKER C. Digital economics[J]. Journal of Economic Literature, 2019, 57(1): 3-43. doi: 10.1257/jel.20171452
    [4]
    何菊香, 赖世茜, 廖小伟. 互联网产业发展影响因素的实证分析[J]. 管理评论, 2015(1): 138-147. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWGD201501014.htm
    [5]
    郭家堂, 骆品亮. 互联网对中国全要素生产率有促进作用吗? [J]. 管理世界, 2016(10): 34-49. doi: 10.19744/j.cnki.11-1235/f.2016.10.003
    [6]
    戚聿东, 褚席. 数字生活的就业效应: 内在机制与微观证据[J]. 财贸经济, 2021(4): 98-114. https://www.cnki.com.cn/Article/CJFDTOTAL-CMJJ202104008.htm
    [7]
    李广昊, 周小亮. 推动数字经济发展能否改善中国的环境污染——基于"宽带中国"战略的准自然实验[J]. 宏观经济研究, 2021(7): 146-160. https://www.cnki.com.cn/Article/CJFDTOTAL-JJGA202107014.htm
    [8]
    SALAHUDDIN M, ALAM K, OZTURK I. The effects of Internet usage and economic growth on CO2 emissions in OECD countries: a panel investigation[J]. Renewable and Sustainable Energy Reviews, 2016, 62(C): 1226-1235.
    [9]
    白雪洁, 孙献贞. 互联网发展影响全要素碳生产率: 成本、创新还是需求引致[J]. 中国人口·资源与环境, 2021(10): 105-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ202110011.htm
    [10]
    WU H, XUE Y, HAO Y, et al. How does internet development affect energy-saving and emission reduction? evidence from China[J]. Energy Economics, 2021, 103: 105577. doi: 10.1016/j.eneco.2021.105577
    [11]
    邵帅, 范美婷, 杨莉莉. 经济结构调整、绿色技术进步与中国低碳转型发展——基于总体技术前沿和空间溢出效应视角的经验考察[J]. 管理世界, 2022(2): 46-69. doi: 10.19744/j.cnki.11-1235/f.2022.0031
    [12]
    杨莉莎, 朱俊鹏, 贾智杰. 中国碳减排实现的影响因素和当前挑战——基于技术进步的视角[J]. 经济研究, 2019(11): 118-132. https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ201911009.htm
    [13]
    ROMER P M. Endogenous technological change[J]. Journal of Political Economy, 1990, 98 (5 Part 2): S71-S102.
    [14]
    CZERNICH N, FALCK O, KRETSCHMER T, et al. Broadband infrastructure and economic growth[J]. The Economic Journal, 2011, 121(552): 505-532. doi: 10.1111/j.1468-0297.2011.02420.x
    [15]
    NORDHAUS W D. Optimal greenhouse-gas reductions and tax policy in the DICE model[J]. The American Economic Review, 1993, 83(2): 313-317.
    [16]
    ACEMOGLU D, AGHION P, BURSZTYN L, et al. The environment and directed technical change[J]. American Economic Review, 2012, 102(1): 131-166. doi: 10.1257/aer.102.1.131
    [17]
    董直庆, 蔡啸, 王林辉. 技术进步方向、城市用地规模和环境质量[J]. 经济研究, 2014(10): 111-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ201410010.htm
    [18]
    张文彬, 李国平. 异质性技术进步的碳减排效应分析[J]. 科学学与科学技术管理, 2015(9): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-KXXG201509006.htm
    [19]
    陈诗一. 能源消耗、二氧化碳排放与中国工业的可持续发展[J]. 经济研究, 2009(4): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ200904006.htm
    [20]
    张希良, 黄晓丹, 张达, 等. 碳中和目标下的能源经济转型路径与政策研究[J]. 管理世界, 2022(1): 35-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GLSJ202201003.htm
    [21]
    ROGELJ J, LUDERER G, PIETZCKER R C, et al. Energy system transformations for limiting end-of-century warming to below 1.5 C[J]. Nature Climate Change, 2015, 5(6): 519-527.
    [22]
    林伯强. 碳中和进程中的中国经济高质量增长[J]. 经济研究, 2022(1): 56-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ202201006.htm
    [23]
    陶莉, 高岩, 朱红波, 等. 有可再生能源和电力存储设施并网的智能电网优化用电策略[J]. 中国管理科学, 2019(2): 150-157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201902015.htm
    [24]
    罗珉, 李亮宇. 互联网时代的商业模式创新: 价值创造视角[J]. 中国工业经济, 2015(1): 95-107. https://www.cnki.com.cn/Article/CJFDTOTAL-GGYY201501010.htm
    [25]
    YU B, MA Y, XUE M, et al. Environmental benefits from ridesharing: a case of Beijing[J]. Applied Energy, 2017, 191: 141-152.
    [26]
    WROBEL A, ROKITA E, MAENHAUT W. Transport of traffic-related aerosols in urban areas[J]. Science of the Total Environment, 2000, 257(2-3): 199-211.
    [27]
    GOLDFARB A, TUCKER C. Digital economics[J]. Journal of Economic Literature, 2019, 57(1): 3-43.
    [28]
    宋德勇, 李超, 李项佑. 新型基础设施建设是否促进了绿色技术创新的"量质齐升"——来自国家智慧城市试点的证据[J]. 中国人口·资源与环境, 2021(11): 155-164. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ202111015.htm
    [29]
    BORENSTEIN S, SALONER G. Economics and electronic commerce[J]. Journal of Economic Perspectives, 2001, 15(1): 3-12.
    [30]
    YILMAZ S, HAYNES K E, DINC M. Geographic and network neighbors: spillover effects of telecommunications infrastructure[J]. Journal of Regional Science, 2002, 42(2): 339-360.
    [31]
    崔蓉, 李国锋. 中国互联网发展水平的地区差距及动态演进: 2006~2018 [J]. 数量经济技术经济研究, 2021(5): 3-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY202105001.htm
    [32]
    郭炳南, 王宇, 张浩. 数字经济发展改善了城市空气质量吗——基于国家级大数据综合试验区的准自然实验[J]. 广东财经大学学报, 2022(1): 58-74. http://xb.gdufe.edu.cn/article/id/137ab003-4ab5-4b22-9396-a367cf20d6f0
    [33]
    湛泳, 李珊. 智慧城市建设、创业活力与经济高质量发展——基于绿色全要素生产率视角的分析[J]. 财经研究, 2022(1): 4-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CJYJ202201001.htm
    [34]
    CHEN J, GAO M, CHENG S, et al. County-level CO2 emissions and sequestration in China during 1997-2017[J]. Scientific Data, 2020, 7(1): 391.
    [35]
    JACOBSON L S, LALONDE R J, SULLIVAN D G. Earnings losses of displaced workers[J]. The American Economic Review, 1993: 685-709.
    [36]
    沈坤荣, 金刚. 中国地方政府环境治理的政策效应——基于"河长制"演进的研究[J]. 中国社会科学, 2018(5): 92-115, 206. https://www.cnki.com.cn/Article/CJFDTOTAL-SHEK202003005.htm
    [37]
    CHETTY R, LOONEY A, KROFT K. Salience and taxation: theory and evidence[J]. American Economic Review, 2009, 99(4): 1145-1177.
    [38]
    GUO S. How does straw burning affect urban air quality in China? [J]. American Journal of Agricultural Economics, 2021, 103(3): 1122-1140.
    [39]
    韩峰, 谢锐. 生产性服务业集聚降低碳排放了吗?——对我国地级及以上城市面板数据的空间计量分析[J]. 数量经济技术经济研究, 2017(3): 40-58. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY201703003.htm
    [40]
    BARON R M, KENNY D A. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations[J]. Journal of Personality and Social Psychology, 1986, 51(6): 1173.
    [41]
    石大千, 丁海, 卫平, 等. 智慧城市建设能否降低环境污染[J]. 中国工业经济, 2018(6): 117-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GGYY201806009.htm
    [42]
    GELBACH J B. When do covariates matter? and which ones, and how much?[J]. Journal of Labor Economics, 2016, 34(2): 509-543.
    [43]
    DELGADO M S, FLORAX R J. Difference-in-differences techniques for spatial data: local autocorrelation and spatial interaction[J]. Economics Letters, 2015, 137: 123-126.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(13)

    Article Metrics

    Article Views(529) PDF Downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return