Volume 39 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
WANG Ya-nan, WAN Meng-yue, XU Feng. The Impact and Mechanism of Corporate Big Data Analytics Capability on Commercial Credit Provision[J]. Journal of Guangdong University of Finance & Economics, 2024, 39(5): 38-54.
Citation: WANG Ya-nan, WAN Meng-yue, XU Feng. The Impact and Mechanism of Corporate Big Data Analytics Capability on Commercial Credit Provision[J]. Journal of Guangdong University of Finance & Economics, 2024, 39(5): 38-54.

The Impact and Mechanism of Corporate Big Data Analytics Capability on Commercial Credit Provision

  • Received Date: 2024-06-01
    Available Online: 2024-11-08
  • Publish Date: 2024-09-28
  • In the era of digital economy, big data technology has transformed corporate management models and profoundly influenced commercial credit decision-making. Based on the annual reports of China's A-share listed companies spanning from 2009 to 2021, this paper analyzes a dataset comprising an indicator system for corporate big data analytics capability through text analysis methods, investigating how big data analytics capability affects commercial credit provision. The results show that big data analytics capability significantly improves corporate commercial credit provision through incentivizing R&D innovation, reducing supply chain concentration, and alleviating financing constraints, the impact exhibiting heterogeneity on the nature of property rights, lifecycle stage, earnings management practices, and the degree of information disclosure. This study contributes to the empirical literature by elucidating how listed companies can effectively allocate supply chain funds through the lens of corporate big data analytics capability, thereby providing theoretical insights for the high-quality collaborative development of supply chain finance in the digital economy era.
  • loading
  • [1]
    AKTER S, WAMBA S F, GUNASEKARAN A, et al. How to improve firm performance using big data analytics capability and business strategy alignment?[J]. International Journal of Production Economics, 2016, 182: 113-131. doi: 10.1016/j.ijpe.2016.08.018
    [2]
    ZHANG A, LV N. Research on the impact of big data capabilities on government's smart service performance: empirical evidence from China[J]. IEEE Access, 2021, 9: 50523-50537. doi: 10.1109/ACCESS.2021.3056486
    [3]
    LIN C, KUNNATHUR A. Strategic orientations, developmental culture, and big data capability[J]. Journal of Business Research, 2019, 105: 49-60. doi: 10.1016/j.jbusres.2019.07.016
    [4]
    GUPTA M, GEORGE J F. Toward the development of a big data analytics capability[J]. Information & Management, 2016, 53(8): 1049-1064.
    [5]
    MVLLER O, FAY M, VOM BROCKE J. The effect of big data and analytics on firm performance: an econometric analysis considering industry characteristics[J]. Journal of Management Information Systems, 2018, 35(2): 488-509. doi: 10.1080/07421222.2018.1451955
    [6]
    张叶青, 陆瑶, 李乐芸. 大数据应用对中国企业市场价值的影响——来自中国上市公司年报文本分析的证据[J]. 经济研究, 2021(12): 42-59. doi: 10.3969/j.issn.1007-6964.2021.12.sjjjyj202112005
    [7]
    陶锋, 朱盼, 邱楚芝, 等. 数字技术创新对企业市场价值的影响研究[J]. 数量经济技术经济研究, 2023(5): 68-91.
    [8]
    吴非, 胡慧芷, 林慧妍, 等. 企业数字化转型与资本市场表现——来自股票流动性的经验证据[J]. 管理世界, 2021(7): 130-144. doi: 10.3969/j.issn.1002-5502.2021.07.010
    [9]
    李青原, 李昱, 章尹赛楠, 等. 企业数字化转型的信息溢出效应——基于供应链视角的经验证据[J]. 中国工业经济, 2023(7): 142-159. doi: 10.3969/j.issn.1006-480X.2023.07.012
    [10]
    陈胜蓝, 刘晓玲. 中国城际高铁与商业信用供给——基于准自然实验的研究[J]. 金融研究, 2019(10): 117-134.
    [11]
    CUNAT V. Trade credit: suppliers as debt collectors and insurance providers[J]. Review of Financial Studies, 2007, 20(2): 491-527. doi: 10.1093/rfs/hhl015
    [12]
    杜勇, 娄靖, 胡红燕. 供应链共同股权网络下企业数字化转型同群效应研究[J]. 中国工业经济, 2023(4): 136-155. doi: 10.3969/j.issn.1006-480X.2023.04.008
    [13]
    孙新波, 钱雨, 张明超, 等. 大数据驱动企业供应链敏捷性的实现机理研究[J]. 管理世界, 2019(9): 133-151, 200. doi: 10.3969/j.issn.1002-5502.2019.09.011
    [14]
    CULL R, XU L C, ZHU T. Formal finance and trade credit during China's transition[J]. Journal of Financial Intermediation, 2009, 18(2): 173-192. doi: 10.1016/j.jfi.2008.08.004
    [15]
    胡悦, 吴文锋. 商业信用融资和我国企业债务的结构性问题[J]. 经济学(季刊), 2022(1): 257-280.
    [16]
    陈剑, 刘运辉. 数智化使能运营管理变革: 从供应链到供应链生态系统[J]. 管理世界, 2021(11): 227-240.
    [17]
    PENG Y, TAO C. Can digital transformation promote enterprise performance? from the perspective of public policy and innovation[J]. Journal of Innovation & Knowledge, 2022, 7(3): 100198.
    [18]
    张会丽, 王开颜. 行业竞争影响企业商业信用提供吗?——来自中国A股资本市场的经验证据[J]. 中央财经大学学报, 2019(2): 64-73.
    [19]
    ASTVANSH V, JINDAL N. Differential effects of received trade credit and provided trade credit on firm value[J]. Production and Operations Management, 2022, 31(2): 781-798. doi: 10.1111/poms.13578
    [20]
    李琦, 刘力钢, 邵剑兵. 数字化转型、供应链集成与企业绩效——企业家精神的调节效应[J]. 经济管理, 2021(10): 5-23. doi: 10.3969/j.issn.1002-2635.2021.10.002
    [21]
    陈世来, 李青原. IPO、商业信用供给与企业绩效[J]. 南开管理评论, 2023(4): 66-76.
    [22]
    吴武清, 田雅婧. 企业数字化转型可以降低费用粘性吗——基于费用调整能力视角[J]. 会计研究, 2022(4): 89-112. doi: 10.3969/j.issn.1003-2886.2022.04.006
    [23]
    ZHANG Q, YANG L T, CHEN Z, et al. A survey on deep learning for big data[J]. Information Fusion, 2018, 42: 146-157. doi: 10.1016/j.inffus.2017.10.006
    [24]
    冀云阳, 周鑫, 张谦. 数字化转型与企业创新——基于研发投入和研发效率视角的分析[J]. 金融研究, 2023(4): 111-129.
    [25]
    SCHAEFER A, SCHIESS D, WEHRLI R. Long-term growth driven by a sequence of general purpose technologies[J]. Economic Modelling, 2014, 37: 23-31. doi: 10.1016/j.econmod.2013.10.014
    [26]
    GHASEMAGHAEI M, CALIC G. Assessing the impact of big data on firm innovation performance: big data is not always better data[J]. Journal of Business Research, 2020, 108: 147-162. doi: 10.1016/j.jbusres.2019.09.062
    [27]
    杨娜, 黄凌云, 王珏. 混合所有制企业的跨国投资等待时间研究——基于资源依赖理论视角[J]. 外国经济与管理, 2020(3): 92-103.
    [28]
    李闻一, 潘珺. 财务共享服务中心与公司商业信用融资——基于异时DID模型研究[J]. 华中师范大学学报(人文社会科学版), 2021(4): 59-72.
    [29]
    底璐璐, 刘诚达, 江伟. 供应商集中度与商业信用——来自中国制造业上市公司的经验证据[J]. 珞珈管理评论, 2022(3): 1-21.
    [30]
    胡泽, 夏新平, 曹立竑. 金融危机时期商业信用的产品市场竞争动机[J]. 金融研究, 2014(2): 84-97.
    [31]
    DUARTE J, SIEGEL S, YOUNG L. Trust and credit: the role of appearance in peer-to-peer lending[J]. Review of Financial Studies, 2012, 25(8): 2455-2484. doi: 10.1093/rfs/hhs071
    [32]
    ELLIOTT W B, GRANT S M, HOBSON J L, et al. Trader participation in disclosure: implications of interactions with management[J]. Contemporary Accounting Research, 2020, 37(1): 68-100.
    [33]
    孙洁, 李杰. 大数据应用、融资约束和企业创新效率[J]. 证券市场导报, 2022(11): 13-23.
    [34]
    NIEBEL T, RASEL F, VIETE S. Big data-big gains? understanding the link between big data analytics and innovation[J]. Economics of Innovation and New Technology, 2019, 28(3): 296-316.
    [35]
    WU X, LIANG L, CHEN S. How big data alters value creation: through the lens of big data competency[J]. Management Decision, 2022, 60(3): 707-734.
    [36]
    KHAN N, YAQOOB I, HASHEM I A T, et al. Big data: survey, technologies, opportunities, and challenges[J]. The Scientific World Journal, 2014, 2(1): 712826.
    [37]
    FARBOODI M, MIHET R, PHILIPPON T, et al. Big data and firm dynamics[J]. AEA Papers and Proceedings, 2019, 109: 38-42.
    [38]
    BOUGHEAS S, MATCUT S, MIZEN P. Corporate trade credit and inventories: new evidence of a trade-off from accounts payable and receivable[J]. Journal of Banking & Finance, 2009, 33(2): 300-307.
    [39]
    钟凯, 梁鹏, 董晓丹, 等. 数字普惠金融与商业信用二次配置[J]. 中国工业经济, 2022(1): 170-188.
    [40]
    何晴, 刘净然, 范庆泉. 企业研发风险与补贴政策优化研究[J]. 经济研究, 2022(5): 192-208.
    [41]
    徐翔, 赵墨非, 李涛, 等. 数据要素与企业创新: 基于研发竞争的视角[J]. 经济研究, 2023(2): 39-56.
    [42]
    蔡贵龙, 张亚楠, 徐悦, 等. 投资者-上市公司互动与资本市场资源配置效率——基于权益资本成本的经验证据[J]. 管理世界, 2022(8): 199-217.
    [43]
    HADLOCK C J, PIERCE J R. New evidence on measuring financial constraints: moving beyond the KZ index[J]. Review of Financial Studies, 2010, 23(5): 1909-1940.
    [44]
    刘莉亚, 何彦林, 王照飞, 等. 融资约束会影响中国企业对外直接投资吗?——基于微观视角的理论和实证分析[J]. 金融研究, 2015(8): 124-140.
    [45]
    綦好东, 郭骏超, 朱炜. 国有企业混合所有制改革: 动力、阻力与实现路径[J]. 管理世界, 2017(10): 8-19.
    [46]
    DICKINSON V. Cash flow patterns as a proxy for firm life cycle[J]. Accounting Review, 2011, 86(6): 1969-1994.
    [47]
    刘诗源, 林志帆, 冷志鹏. 税收激励提高企业创新水平了吗?——基于企业生命周期理论的检验[J]. 经济研究, 2020(6): 105-121.
    [48]
    李心愉, 赵景涛, 段志明. 盈余管理行为与股票定价——基于中国A股市场的检验[J]. 金融论坛, 2018(3): 66-80.
    [49]
    马永强, 赖黎, 曾建光. 盈余管理方式与信贷资源配置[J]. 会计研究, 2014(12): 39-45, 95.
    [50]
    孙晓华, 车天琪, 马雪娇. 企业碳信息披露的迎合行为: 识别、溢价损失与作用机制[J]. 中国工业经济, 2023(1): 132-150.
    [51]
    苏玲, 王梦霞. 利率市场化、会计信息披露质量与债务融资成本[J]. 金融监管研究, 2023(3): 58-72.
    [52]
    王海芳, 姜道平. 数字化转型会提升企业商业信用融资吗?[J]. 技术经济, 2023(1): 104-116.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(13)

    Article Metrics

    Article Views(31) PDF Downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return