Volume 37 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
LU Ting-ting, ZHU Zhi-yong, LIU Chang-chang. Artificial Intelligence, Demographic Structure Transition and Changes in Labor Income Share[J]. Journal of Guangdong University of Finance & Economics, 2022, 37(4): 4-17.
Citation: LU Ting-ting, ZHU Zhi-yong, LIU Chang-chang. Artificial Intelligence, Demographic Structure Transition and Changes in Labor Income Share[J]. Journal of Guangdong University of Finance & Economics, 2022, 37(4): 4-17.

Artificial Intelligence, Demographic Structure Transition and Changes in Labor Income Share

  • Received Date: 2022-03-15
    Available Online: 2022-07-12
  • Publish Date: 2022-07-28
  • The previous researches focused on the linear relationship between artificial intelligence and labor income share, ignoring the potential nonlinear characteristics of this relationship. Based on the provincial panel data of China from 2006 to 2017, this paper takes human capital and population ageing as threshold variables to build a panel threshold model, and adds the square term of artificial intelligence to investigate the nonlinear impact of artificial intelligence on labor income share. The results show that the influence of artificial intelligence on labor income share demonstrates U-shaped characteristic of restraining first and then increasing, and the inhibition is the main effect at this stage; the influence of artificial intelligence on labor income share has the characteristics of double threshold of human capital and single threshold of population aging, that is, with the improvement of human capital level, the negative impact of artificial intelligence on labor income share decreases, while with the deepening of population aging, the negative impact of artificial intelligence on labor income share increases, and the conclusion is still valid after the robustness test of replacing explained variables, changing sampling times and eliminating extreme values. Therefore, it is proposed to improve the level of human capital and promote the aging development of artificial intelligence technology, so as to alleviate the decline of labor income share brought by artificial intelligence, accelerate the healthy and sustainable development of artificial intelligence and solidly promote common prosperity.
  • loading
  • [1]
    洪永淼, 张明. 发展数字经济应注重维护社会公平[N]. 经济参考报, 2021-04-06(007).
    [2]
    KORINEK A, STIGLITZ J E, Artificial intelligence and its implications for income distribution and unemployment[R]. NBER Working Paper, 2017: 24174.
    [3]
    沈红兵. 人工智能技术进步对劳动就业的影响研究[M]. 成都: 西南财经大学, 2019.
    [4]
    李稻葵, 刘霖林, 王红领. GDP中劳动收入份额演变的U型规律[J]. 经济研究, 2009(1): 70-82. https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ200901005.htm
    [5]
    罗志恒, 杨新, 万赫. 共同富裕的现实内涵与实现路径: 基于财税改革的视角[J]. 广东财经大学学报, 2022(1): 4-13. http://xb.gdufe.edu.cn/article/id/ba57276d-a27c-49f1-a4c9-6f4e71cf67db
    [6]
    陈秋霖, 许多, 周羿. 人口老龄化背景下人工智能的劳动力替代效应——基于跨国面板数据和中国省级面板数据的分析[J]. 中国人口科学, 2018(6): 30-42, 126-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKRK201806004.htm
    [7]
    高春明, 于潇, 陈世坤. 人工智能对中国未来劳动力就业的影响——基于劳动力供给视角的分析[J]. 社会科学战线, 2020(10): 249-254. https://www.cnki.com.cn/Article/CJFDTOTAL-SHZX202010027.htm
    [8]
    陈彦斌, 林晨, 陈小亮. 人工智能、老龄化与经济增长[J]. 经济研究, 2019(7): 47-63. doi: 10.3969/j.issn.1672-5719.2019.07.045
    [9]
    曹守新, 徐晓雯. 人工智能对劳动力就业的影响及其应对[J]. 山东社会科学, 2020(12): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSK202012022.htm
    [10]
    杜传忠, 陈维宣, 胡俊. 发达国家人工智能发展经验以及中国的借鉴[J]. 湖南科技大学学报: 社会科学版, 2019(3): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-XTGS201903009.htm
    [11]
    屈小博. 机器人和人工智能对就业的影响及趋势[J]. 劳动经济研究, 2019(5): 133-143. https://www.cnki.com.cn/Article/CJFDTOTAL-LDJJ201905006.htm
    [12]
    金陈飞, 吴杨, 池仁勇, 等. 人工智能提升企业劳动收入份额了吗?[J]. 科学学研究, 2020(1): 54-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KXYJ202001008.htm
    [13]
    KARABARBOUNIS L, NEIMAN B. The global decline of the labor share[J]. The Quarterly Journal of Economics, 2014, 129(1): 61-103. doi: 10.1093/qje/qjt032
    [14]
    ACEMOGLU D, RESTREPO P. The race between man and machine: implications of technology for growth, factor shares, and employment[J]. American Economic Review, 2018, 108(6): 1448-1542.
    [15]
    董志强, 黄旭. 人工智能技术发展背景下的失业及政策: 理论分析[J]. 社会科学战线, 2019(12): 76-84, 281. https://www.cnki.com.cn/Article/CJFDTOTAL-SHZX201912015.htm
    [16]
    余玲铮, 魏下海, 吴春秀. 机器人对劳动收入份额的影响研究——来自企业调查的微观证据[J]. 中国人口科学, 2019(4): 114-125, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKRK201904012.htm
    [17]
    郭凯明. 人工智能发展、产业结构转型升级与劳动收入份额变动[J]. 管理世界, 2019(7): 60-77, 202-203. doi: 10.3969/j.issn.1002-5502.2019.07.007
    [18]
    李霞, 涂涛涛, 雷泽奎. 人工智能与中国要素报酬分配——基于GTAP模型的分析[J]. 中国科技论坛, 2020(9): 133-144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKT202009020.htm
    [19]
    吴振华. 中国劳动收入份额影响机理研究[M]. 北京: 经济科学出版社, 2018.
    [20]
    龚刚, 杨光. 论工资性收入占国民收入比例的演变[J]. 管理世界, 2010(5): 45-55, 187-188. https://www.cnki.com.cn/Article/CJFDTOTAL-GLSJ201005006.htm
    [21]
    杨虎涛. 人工智能、奇点时代与中国机遇[J]. 财经问题研究, 2018(12): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CJWT201812002.htm
    [22]
    程承坪, 彭欢. 人工智能影响就业的机理及中国对策[J]. 中国软科学, 2018(10): 62-70. doi: 10.3969/j.issn.1002-9753.2018.10.008
    [23]
    蔡啸, 黄旭美. 人工智能技术会抑制制造业就业吗?——理论推演与实证检验[J]. 商业研究, 2019(6): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-BUSI201906007.htm
    [24]
    张美莎, 曾钰桐, 冯涛. 人工智能对就业需求的影响: 基于劳动力结构视角[J]. 中国科技论坛, 2021(12): 125-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKT202112015.htm
    [25]
    张新春, 董长瑞. 人工智能技术条件下"人的全面发展"向何处去——兼论新技术下劳动的一般特征[J]. 经济学家, 2019(1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JJXJ201901008.htm
    [26]
    李新娥, 喻子君, 夏静, 等. 人工智能技术应用下制造业企业就业效应研究——基于101家上市公司的实证检验[J]. 中国软科学, 2021(S1): 277-286. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRK2021S1033.htm
    [27]
    HURST E. The retirement of a consumption puzzle[R]. NBER Working Paper, 2008: 13789.
    [28]
    蔡昉, 王美艳. 如何解除人口老龄化对消费需求的束缚[J]. 财贸经济, 2021(5): 5-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CMJJ202105002.htm
    [29]
    HANSEN B E. Threshold effects in non-dynamic panels: estimation, testing, and inference[J]. Journal of Econometrics, 1999, 93(2): 345-368.
    [30]
    CHENG H, JIA R, LI D, et al. The rise of robots in China[J]. Journal of Economic Perspectives, 2019, 33(2): 71-88.
    [31]
    ACEMOGLU D, RESTREPO P. Robots and jobs: evidence from U.S. labor market[J]. Journal of Political Economy, 2020, 128(6): 2188-2244.
    [32]
    闫雪凌, 朱博楷, 马超. 工业机器人使用与制造业就业: 来自中国的证据[J]. 统计研究, 2020(1): 74-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYJ202001008.htm
    [33]
    魏下海, 张沛康, 杜宇洪. 机器人如何重塑城市劳动力市场: 移民工作任务的视角[J]. 经济学动态, 2020(10): 92-109. https://www.cnki.com.cn/Article/CJFDTOTAL-JJXD202010007.htm
    [34]
    HANSEN B E. Sample splitting and threshold estimation[J]. Econometrica, 2000, 68(3): 575-604.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(10)

    Article Metrics

    Article Views(723) PDF Downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return