The Impact of Co-agglomeration of Producer Services and Manufacturing Industries on the Enterprise's Innovation
-
摘要: 制造业与生产性服务业合理的空间协同分布体系是企业创新发展的关键所在,但目前关于生产性服务业与制造业协同集聚如何影响企业创新的研究还相对匮乏。鉴于此,基于产业空间协同分布视角,利用中国工业企业微观数据与城市面板的匹配数据,实证检验生产性服务业与制造业协同集聚对制造业企业技术创新的影响效应及其作用机制。结果发现:生产性服务业与制造业协同集聚显著促进了企业的技术创新,并且这一作用依赖于企业所有制类型、要素密集度、沟通密集度、城市规模等异质性因素。进一步研究表明,生产性服务业与制造业协同集聚主要通过作用于企业的交易成本结构、进入与退出决策行为及研发创新激励来影响企业的技术创新活动。Abstract: The integration of advanced manufacturing and modern services is the key to enterprise's innovation. However, there are rare researches on how the co-agglomeration of producer services and manufacturing industries stimulates technological innovation of manufacturing enterprises. Based on the matching data of China's industrial enterprises and prefecture-level cities, this paper empirically examines the impact and its mechanism of co-agglomeration of producer services and manufacturing industries on enterprise's innovation. The results show that the co-agglomeration of producer services and manufacturing industries significantly promotes the innovation tendency of manufacturing enterprises, and this effect depends on factors such as the type of enterprise ownership, factor intensity, the size of city and so on. Furthermore, the co-agglomeration of producer services and manufacturing industries influences the innovation tendency of manufacturing enterprises mainly through the channels of transaction cost, behavior of entry and exit, incentive of R&D innovation.
-
表 1 主要变量统计性描述
符号 平均值 标准差 最小值 最大值 innov 2.595 1 20.955 5 0.000 0 588.053 3 coagg 2.785 4 0.451 2 0.829 9 4.247 0 lnage 2.086 9 0.985 2 0.000 0 4.795 8 exp 0.255 0 0.435 8 0.000 0 1.000 0 lnemp 4.857 9 1.142 0 2.079 4 11.579 0 lnavek 4.744 7 1.060 4 0.004 6 11.663 1 sshare 0.157 2 0.348 8 0.000 0 1.000 0 fshare 0.074 7 0.245 9 0.000 0 1.000 0 表 2 基准回归结果
变量 (1) (2) (3) (4) (5) (6) (7) (8) coagg 1.833 2*** 1.690 0*** 1.791 4*** 1.341 9*** 1.607 2*** 1.014 1*** 1.005 3*** 1.290 7*** (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) lnage 1.501 7*** -0.077 8 -0.552 6*** -0.310 8* -0.602 7*** -0.705 0*** -0.629 2*** (0.000 0) (0.672 1) (0.003 0) (0.090 2) (0.001 0) (0.000 2) (0.000 7) lnage2 0.408 5*** 0.508 4*** 0.260 5*** 0.286 2*** 0.321 4*** 0.282 0*** (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) exp 3.489 5*** 1.421 2*** 1.540 0*** 1.527 0*** 2.095 1*** (0.000) (0.000 0) (0.000 0) (0.000 0) (0.000 0) lnemp 2.833 2*** 3.186 2*** 3.208 4*** 3.271 9*** (0.000 0) (0.000 0) (0.000 0) (0.000 0) lnavek 2.311 5*** 2.318 7*** 2.407 1*** (0.000 0) (0.000 0) (0.000 0) sshare -0.370 7 -0.478 2* (0.155 0) (0.066 0) fshare -2.903 6*** (0.000 0) Cons -2.176 9*** -4.571 4*** -3.668 1*** -2.842 3*** -15.793 0*** -26.810 8*** -26.857 9*** -28.244 2*** (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) Obs 220 686 220 686 220 686 220 686 220 665 220 487 218 476 218 476 R2 0.001 4 0.004 7 0.00 5 0.009 2 0.024 7 0.035 4 0.035 6 0.036 6 注:括号中为稳健p值,*、**、***分别表示10%、5%、1%的显著性水平。下表同 表 3 区分产业集聚类型的回归结果
变量 (1) (2) (3) (4) (5) (6) coagg 1.328 9*** (0.000 0) coaggjt 0.983 7*** (0.000 0) coaggtel 0.772 5*** (0.000 0) coaggfin 0.527 3*** (0.000 0) coagglen 0.814 2*** (0.000 0) coaggrd 1.250 6*** (0.000 0) 控制变量 Y Y Y Y Y Y Obs 218 476 218 476 218 476 218 476 218 476 218 476 R2 0.036 6 0.036 6 0.036 3 0.036 1 0.036 4 0.037 0 注:控制变量同表 2,篇幅所限未能予以详细列示。下表同 表 4 区分城市规模及产业集聚类型的回归结果
变量 (1) (2) (3) (4) (5) (6) (7) (8) (9) 大城市 中等城市 小城市 coagg 0.706 3*** 1.091 8*** 1.253 4*** (0.000 0) (0.000 0) (0.000 0) coaggks 0.758 5*** 0.981 4*** 0.787 8*** (0.000 0) (0.000 0) (0.004 0) coaggrd 0.973 7*** 1.253 4*** 0.345 2 (0.000 0) (0.000 0) (0.192 1) 控制变量 Y Y Y Y Y Y Y Y Y Obs 152 353 152 353 152 353 44 745 44 745 44 745 44 745 21 378 21 378 R2 0.037 7 0.037 6 0.038 0 0.035 1 0.035 0 0.035 6 0.035 6 0.029 0 0.028 7 表 5 区分行业技术密集度及沟通密集度的回归结果
劳动密集型 资本密集型 技术密集型 非沟通密集型 沟通密集型 coagg 0.628 1*** 2.026 1*** 1.418 8*** 1.146 3*** 2.424 0*** (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) 控制变量 Y Y Y Y Y Obs 97 386 68 238 52 932 80 228 63 684 R2 0.017 6 0.041 8 0.052 1 0.020 9 0.060 1 表 6 区分其他异质性特征的回归结果
发明 其他 内资 外资 约束强 约束弱 距离大 距离小 密集型 非密集型 coagg 0.32*** 1.11*** 1.39*** 1.04*** 0.45*** 1.98*** 0.72*** 1.78*** 1.08*** 1.28*** (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 控制变量 Y Y Y Y Y Y Y Y Y Y Obs 218 556 218 556 166 915 42 372 105 045 113 511 101 684 116 872 37 601 180 955 R2 0.020 5 0.028 9 0.043 0.021 2 0.002 8 0.037 1 0.034 4 0.037 4 0.055 9 0.031 2 表 7 生产性服务业与制造业协同集聚影响企业创新的稳健性回归结果
变量 (1) (2) (3) (4) (5) (6) coagg 0.253 0*** 0.207 8** 0.192 9*** 0.189 2*** 0.061 2* 0.176 2*** (0.000 0) (0.010 0) (0.000 0) (0.000 0) (0.070 0) (0.000 0) 控制变量 Y Y Y Y Y Y Obs 3 923 3 923 3 923 3 923 3 923 3 923 R2 0.136 3 0.134 1 0.129 7 0.138 4 0.118 5 0.144 7 注:列(1)~(6)是采用coagg、coaggks、coaggjt、coaggtel、coaggfin、coagglen为核心解释变量的结果 表 8 生产性服务业与制造业协同集聚对企业创新的作用机制回归结果
变量 研发创新激励M1 进入决策M2en 退出决策M2ex 交易成本结构M3 coagg 0.052 3***(0.000 0) 0.180 2***(0.000 0) 0.028 4**(0.010 2) -0.633 7(0.603 9) lnage -0.160 6***(0.000 0) -1.102 3***(0.000 0) 0.034 6**(0.039 6) -1.306 5(0.5640) lnage2 0.054 9***(0.000 0) 0.149 4***(0.000 0) 0.014 6***(0.000 6) 1.065 2(0.175 7) exp 0.142 3***(0.000 0) -0.136 5***(0.000 0) -0.096 2***(0.000 0) -1.844 1*(0.092 7) lnemp 0.530 2***(0.000 0) -0.212 2***(0.000 0) -0.234 7***(0.000 0) 3.807 4***(0.000 0) lnavek 0.434 6***(0.000 0) -0.104 3***(0.000 0) -0.114 1***(0.000 0) 1.622 1*(0.091 1) sshare 0.200 6***(0.000 0) 0.004 8(0.799 1) 0.583 7***(0.000 0) 13.908 4***(0.001 1) fshare -0.446 2***(0.000 0) 0.075 9***(0.000 0) 0.005 6(0.781 6) -4.196 9(0.221 2) Obs 126 828 143 912 143 912 140 539 R2 0.150 6 0.151 1 0.048 2 0.001 3 表 9 影响机制的稳健性检验结果
变量 (1) (2) (3) (4) (5) coagg 0.032 6*(0.083 0) coagg1 -0.440 1***(0.000 0) -0.390 2***(0.000 0) -0.045 5(0.291 0) coagg2 0.201 3***(0.000 0) 控制变量 Y Y Y Y Y N 28 861 28 006 29 317 21 793 8 089 R2 0.068 6 0.406 1 0.660 4 0.534 2 0.089 1 表 10 生产性服务业与制造业协同集聚影响企业创新的中介效应检验结果
检验对象 中介变量 第一步 第二步 第三步 中介效应占总效应比例 研发创新激励 产业协同集聚 1.975 9***(0.159 3) 0.052 3***(0.011 5) 1.839 1***(0.156 5) 0.069 2 2.615 7***(0.038 4) 进入决策 产业协同集聚 1.878 2***(0.142 7) 0.055 4***(0.002 5) 1.837 2***(0.143 0) 0.021 8 0.738 6***(0.147 9) 退出决策 产业协同集聚 1.878 2***(0.142 7) 0.004 2**(0.001 8) 1.880 6***(0.142 7) -0.001 3 -0.581 3***(0.205 2) 交易成本结构 产业协同集聚 1.889 7***(0.145 6) -0.633 7(1.277 4) 1.889 6***(0.145 6) 0.000 1 -0.000 2(0.000 3) 注:括号内数字为标准差 -
[1] MULLER E. Innovation interactions between knowledge-intensive business services and small and medium-sized enterprises: an analysis in terms of evolution, knowledge and territories[M]. Heidelberg: Physica-Verlag Heidelberg, 2012. [2] JACOBS W, KOSTER H R A, VAN OORT F. Co-agglomeration of knowledge-intensive business services and multinational enterprises[J]. Journal of Economic Geography, 2013, 14(2): 443-475. http://joeg.oxfordjournals.org/content/14/2/443.full.pdf+html [3] 原毅军, 郭然. 生产性服务业集聚、制造业集聚与技术创新——基于省级面板数据的实证研究[J]. 经济学家, 2018(5): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JJXJ201805005.htm [4] KE S, HE M, YUAN C. Synergy and co-agglomeration of producer services and manufacturing: a panel data analysis of Chinese cities[J]. Regional Studies, 2014, 48(11): 1829-1841. doi: 10.1080/00343404.2012.756580 [5] YUAN F, GAO J, WANG L, et al. Co-location of manufacturing and producer services in Nanjing, China[J]. Cities, 2017, 63: 81-91. doi: 10.1016/j.cities.2016.12.021 [6] ELLISON G, GLAESER E L, KERR W R. What causes industry agglomeration? evidence from coagglomeration patterns[J]. American Economic Review, 2010, 100(3): 1195-1213. doi: 10.1257/aer.100.3.1195 [7] VENABLES A J. Equilibrium locations of vertically linked industries[J]. International Economic Review, 1996, 37: 341-359. doi: 10.2307/2527327 [8] MARSHALL A. Principles of economics[M]. London: Macmillan and Co., Ltd., 1920. [9] MACPHERSON A. The role of producer service outsourcing in the innovation performance of New York State manufacturing firms[J]. Annals of the association of American Geographers, 1997, 87(1): 52-71. doi: 10.1111/0004-5608.00041 [10] SHEARMUR R, DOLOREUX D. Innovation and knowledge-intensive business service: the contribution of knowledge-intensive business service to innovation in manufacturing establishments[J]. Economics of Innovation and New Technology, 2013, 22(8): 751-774. doi: 10.1080/10438599.2013.786581 [11] HOWARD E, NEWMAN C, TARP F. Measuring industry coagglomeration and identifying the driving forces[J]. Journal of Economic Geography, 2015, 16(5): 1055-1078. http://smartsearch.nstl.gov.cn/paper_detail.html?id=d76e9f743b4fc7b3ed42b9d683f613a0 [12] SHEARMUR R, DOLOREUX D. Urban hierarchy or local buzz? high-order producer service and (or) knowledge-intensive business service location in Canada, 1991-2001[J]. The Professional Geographer, 2008, 60(3): 333-355. doi: 10.1080/00330120801985661 [13] SHEARMUR R, DOLOREUX D. Knowledge-intensive business services use and user innovation: high-order services, geographic hierarchies and internet use in Quebec's manufacturing sector[J]. Regional Studies, 2015, 49(10): 1654-1671. doi: 10.1080/00343404.2013.870988 [14] ILLERIS S. Proximity between service producers and service users[J]. Tijdschrift voor Economische en sociale geografie, 1994, 85(4): 294-302. doi: 10.1111/j.1467-9663.1994.tb01340.x [15] MACPHERSON A. Producer service linkages and industrial innovation: results of a twelve-year tracking study of New York state manufacturers[J]. Growth and Change, 2008, 39(1): 1-23. doi: 10.1111/j.1468-2257.2007.00403.x [16] KOCH A, STROTMANN H. Impact of functional integration and spatial proximity on the post-entry performance of knowledge intensive business service firms[J]. International Small Business Journal, 2006, 24(6): 610-634. doi: 10.1177/0266242606069269 [17] VANOORT. Urban growth and innovation: spatially bounded externalities in the Netherlands[M]. London: Routledge, 2017. [18] WETERINGS A, BOSCHMA R. Does spatial proximity to customers matter for innovative performance? evidence from the Dutch software sector[J]. Research Policy, 2009, 38(5): 746-755. doi: 10.1016/j.respol.2008.12.011 [19] SUTARIA V, HICKS D A. New firm formation: dynamics and determinants[J]. The Annals of Regional Science, 2004, 38(2): 241-262. doi: 10.1007/s00168-004-0194-9 [20] GREK J, KARLSSON C, KLAESSON J. Determinants of entry and exit: the significance of demand and supply conditions at the regional level[M]//KOURTIT K, NIJKAMP P, STOUGH R R. Drivers of innovation, entrepreneurship and regional dynamics. Berlin & Heidelberg: Springer, 2011: 121-141. [21] 王永进, 冯笑. 行政审批制度改革与企业创新[J]. 中国工业经济, 2018(2): 24-42. https://www.cnki.com.cn/Article/CJFDTOTAL-GGYY201802003.htm [22] 张虎, 韩爱华, 杨青龙. 中国制造业与生产性服务业协同集聚的空间效应分析[J]. 数量经济技术经济研究, 2017(2): 3-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY201702001.htm [23] HUERGO E. The role of technological management as a source of innovation: evidence from Spanish manufacturing firms[J]. Research Policy, 2006, 35(9): 1377-1388. doi: 10.1016/j.respol.2006.07.005 [24] ACEMOGLU D. Introduction to modern economic growth[M]. Princeton: Princeton University Press, 2009. [25] GAYLE P G. Market concentration and innovation: new empirical evidence on the Schumpeterian hypothesis[R]. University of Colorado at Boulder, 2003. [26] BARRIOS S, STROBL E. Foreign direct investment and productivity spillovers: evidence from the Spanish experience[J]. Review of World Economics, 2002, 138(3): 459-481. doi: 10.1007/BF02707949 [27] 顾乃华. 生产性服务业对工业获利能力的影响和渠道——基于城市面板数据和SFA模型的实证研究[J]. 中国工业经济, 2010(5): 48-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GGYY201005007.htm [28] 王永进, 张国峰. 人口集聚、沟通外部性与企业自主创新[J]. 财贸经济, 2015(5): 132-146. doi: 10.3969/j.issn.1005-913X.2015.05.064