Does Green Credit Improve M & A Performance of Heavy Pollution Enterprises: Empirical Evidence from Chinese Listed Companies
-
摘要: 引导重污染企业通过并购改造落后产能,实现产业绿色升级,是国家推动绿色、低碳、循环经济发展的重要手段。基于2012年《绿色信贷指引》的落实,采用双重差分模型构造准自然实验,实证检验绿色信贷政策对重污染企业并购绩效的影响。研究发现:绿色信贷政策显著降低了重污染企业的并购绩效,且该负向影响在法律环境好的地区更加显著;机制检验结果表明,受制于绿色信贷政策的规制,其对重污染企业并购绩效的影响主要通过信贷规模的收缩和融资成本发挥作用。本文的研究结论为进一步从资源配置视角理解并购“折价观”以及为我国绿色信贷政策实施效果的评价提供了参考和借鉴。Abstract: It is an important means for the country to promote the development of green, low-carbon and circular economy to guide heavy pollution enterprises to transform backward production capacity through merger and acquisition and realize the green upgrading of the industry. Based on the implementation of "green credit guidelines" in 2012, this paper uses the double difference model to construct a quasi natural experiment to test the impact of green credit policy on the M & A performance of heavy polluting enterprises. The results show that green credit policy significantly reduces the M & A performance of heavily polluting enterprises; the negative impact is more significant in areas with good legal environment. The results of mechanism test show that, subject to the regulation of green credit policy, its impact on M & A performance of heavy polluting enterprises mainly is made through the impact of credit scale contraction and financing cost. The above findings not only provide a further understanding of the "discount view" of M & A from the perspective of resource allocation, but also provide an important reference for the evaluation of the implementation effect of green credit policy in China.
-
表 1 主要变量及说明
变量类型 变量符号 变量名称 变量说明 因变量 BHAR 12 并购绩效 并购事件首次公告后12个月内的收购公司的市场绩效 BHAR 24 并购事件首次公告后24个月内的收购公司的市场绩效 自变量 Post 《绿色信贷指引》的颁布事件 虚拟变量,《绿色信贷指引》发布之前定义为0,否则定义为1。 控制变量 RelaSize 并购交易规模 并购交易金额/并购方上一年的资产总额 Mrelated 关联交易 虚拟变量,若并购事件属于关联交易则取值为1,否则为0 Mpay 并购支付方式 虚拟变量,若并购方采用现金支付则赋值为1,否则为0 Undertype 标的类型 虚拟变量,股权并购赋值为1,否则为0 Majorm 重大资产重组 虚拟变量,若并购事件属于重大资产重组则赋值为1,否则为0 Msize 并购方规模 并购方规模,并购方在并购前一年资产总额的自然对数 Mleve 并购方负债结构 并购方并购前一年的资产负债率 Cf 现金流 并购方在并购前一年经营现金流与总资产的比值 Growth 公司成长性 并购方在并购前一年的主营业务收入增长率 Sharefir 公司治理 并购方第一大股东持股比例 表 2 变量描述性统计结果
VarName Obs Mean SD Min Median Max BHAR 12 6 709 -0.107 0.592 -1.394 -0.142 2.199 BHAR 24 6 709 -0.256 0.782 -2.370 -0.270 3.007 Treat 6 709 0.235 0.424 0.000 0.000 1.000 RelaSize 6 709 0.187 0.600 0.000 0.019 4.401 Mrelated 6 709 0.214 0.410 0.000 0.000 1.000 Mpay 6 709 0.800 0.400 0.000 1.000 1.000 Undertype 6 709 1.058 0.712 0.000 1.000 3.000 Majorm 6 709 0.079 0.270 0.000 0.000 1.000 Msize 6 709 22.109 1.298 19.408 21.930 26.135 Mleve 6 709 0.458 0.211 0.054 0.458 0.955 Cf 6 709 0.042 0.073 -0.184 0.042 0.250 Growth 6 709 0.268 0.621 -0.582 0.144 4.080 Sharefir 6 709 0.349 0.150 0.087 0.329 0.750 表 3 绿色信贷与重污染企业并购绩效的回归结果
变量 BHAR 12 BHAR 24 Treat×post -0.072**(-2.203) -0.088**(-2.000) Treat 0.039(1.129) -0.042(-0.914) Post 0.006(0.193) 0.292***(6.917) RelaSize1 0.046***(2.836) 0.025(1.177) Mrelated -0.024(-1.282) -0.073***(-3.140) Mpay -0.026(-0.963) -0.038(-1.042) Undertype -0.017(-1.266) -0.023(-1.331) Majorm 0.171***(4.352) 0.194***(3.943) Msize -0.011*(-1.805) -0.018**(-2.190) Mleve -0.022(-0.592) -0.021(-0.416) Cf 0.221**(2.108) 0.600***(4.506) Growth 0.056***(4.096) 0.047***(2.859) Sharefir -0.029(-0.600) 0.154**(2.417) _cons 0.254*(1.771) -0.002(-0.009) Year Yes Yes Industry Yes Yes N 6 709 6 709 r2_a 0.119 0.093 注:***、**、*分别代表 1%、5%、10%的显著性水平,括号中为双侧检验的t值。下表同。 表 4 绿色信贷与重污染企业并购绩效的回归分析:法制环境视角
变量 BHAR 12 BHAR 24 (1) (2) (3) (4) Law_L Law_H Law_L Law_H Treat×post -0.020 -0.124** -0.030 -0.131* (-0.459) (-2.338) (-0.502) (-1.852) Treat 0.006 0.086 -0.086 -0.001 (0.144) (1.478) (-1.408) (-0.008) Post 0.029 -0.070 0.338*** 0.136 (0.852) (-1.142) (6.949) (1.436) RelaSize1 0.046 0.049** -0.007 0.044* (1.491) (2.511) (-0.182) (1.780) Mrelated -0.011 -0.027 -0.082*** -0.061* (-0.417) (-1.029) (-2.726) (-1.721) Mpay -0.010 -0.046 -0.037 -0.043 (-0.256) (-1.196) (-0.718) (-0.840) Undertype -0.029 -0.009 -0.050** -0.002 (-1.476) (-0.496) (-2.004) (-0.092) Majorm 0.222*** 0.135** 0.272*** 0.150** (3.733) (2.561) (3.740) (2.233) Msize -0.020** -0.006 -0.024* -0.014 (-2.203) (-0.679) (-1.920) (-1.179) Mleve 0.078 -0.083 0.047 -0.071 (1.422) (-1.576) (0.635) (-1.015) Cf 0.253* 0.155 0.731*** 0.459** (1.665) (1.066) (3.813) (2.469) Growth 0.051** 0.059*** 0.049** 0.045** (2.454) (3.258) (2.108) (1.989) Sharefir -0.007 -0.033 0.117 0.206** (-0.101) (-0.500) (1.338) (2.233) _cons 0.411* 0.212 0.087 0.022 (1.941) (1.055) (0.315) (0.079) Year Yes Yes Yes Yes Industry Yes Yes Yes Yes N 3095 3614 3095 3614 r2_a 0.125 0.119 0.102 0.094 表 5 平行趋势检验
变量 BHAR 12 BHAR 24 Pre_2 0.038(0.329) -0.022(-0.142) Pre_1 -0.094(-1.486) 0.070(0.836) Current -0.105*(-1.689) -0.122(-1.471) Post_1 -0.168***(-2.865) -0.157**(-2.013) Post_2 -0.200***(-3.624) -0.480***(-6.547) _cons 0.577**(2.286) 0.166(0.493) Controls/Year/Industry Yes Yes N 1 935 1 935 Adj.R-Square 0.148 0.133 表 6 绿色信贷与重污染企业并购绩效的回归分析:基于PSM+DID的检验
变量 BHAR 12 BHAR 24 Treat×post -0.174**(-2.091) -0.123***(-2.657) Treat 0.183**(2.121) 0.013(0.239) Post -0.140(-0.496) -0.006(-0.014) Controls/Year/Industry Yes Yes N 2 798 2 798 Adj.R2 0.163 0.130 表 7 绿色信贷政策实施前后重污染企业并购绩效的对比分析
变量 技术绩效 规模绩效 Crste M-U Scale M-U 2008 0.984 154.798*** 0.986 127.802*** 2009 0.981 108.013*** 0.984 60.372*** 2010 0.962 174.737*** 0.965 148.009*** 2011 0.984 127.725*** 0.986 48.062*** 2012 0.996 - 0.997 - 2013 0.995 19.226*** 0.996 39.045*** 2014 0.994 53.645*** 0.995 53.525*** 2015 0.996 5.265** 0.997 6.625** 2016 0.992 131.255*** 0.994 60.917*** 注:M-U为Mann-Whitney U非参数检验年度绩效的显著性差异,基准年度为2012年。 表 8 单变量检验
变量名称 均值检验 中值检验 Post=0 Post=1 T检验 Post=0 Post=1 Chi2 融资规模 0.212 0.199 0.013* 0.217 0.181 19.571*** 融资成本 0.014 0.017 -0.003* 0.014 0.022 31.503*** 表 9 绿色信贷与重污染企业并购绩效的回归分析:融资规模视角
变量 BHAR 12 BHAR 24 Fina_M Fina_S Fina_M Fina_S Treat×post -0.082 -0.089 -0.138** -0.084 (-1.627) (-1.172) (-2.199) (-1.247) Treat 0.045 0.078 0.005 -0.015 (0.846) (1.691) (0.076) (-0.209) Post 0.280*** -0.008 0.167** 0.188*** (4.644) (-0.178) (2.503) (3.101) Controls/Year/Industry Yes Yes Yes Yes N 3 184 3 351 3 184 3 351 Adj.R2 0.133 0.110 0.108 0.079 表 10 绿色信贷与重污染企业并购绩效的回归分析:融资成本视角
变量 BHAR 12 BHAR 24 Cost_H Cost_L Cost_H Cost_L Treat×post -0.091* -0.027 -0.145** -0.009 (-1.846) (-0.610) (-2.274) (-0.148) Treat 0.043 0.028 -0.044 -0.042 (0.788) (0.613) (-0.631) (-0.661) Post 0.076 -0.005 0.378*** 0.230*** (1.191) (-0.141) (4.526) (4.079) Controls/Year/Industry Yes Yes Yes Yes N 3 283 3 426 3 283 3 426 Adj.R2 0.134 0.107 0.083 0.089 表 11 绿色信贷与重污染企业并购绩效的回归分析:异质性视角
变量 BHAR 12 BHAR 24 Cleanma NCleanma Cleanma NCleanma Treat×post -0.010 -0.078* -0.051 -0.104* (-0.159) (-1.728) (-0.674) (-1.690) Treat 0.019 0.021 -0.019 -0.056 (0.313) (0.435) (-0.240) (-0.895) Post -0.009 0.081* 0.287*** 0.385*** (-0.231) (1.688) (4.933) (5.668) Controls/Year/Industry Yes Yes Yes Yes N 4 259 2 450 4 259 2 450 Adj.R2 0.124 0.118 0.094 0.103 -
[1] 沈洪涛, 马正彪. 地区经济发展压力、企业环境表现与债务融资[J]. 金融研究, 2014(2): 153-166. https://www.cnki.com.cn/Article/CJFDTOTAL-JRYJ201402012.htm [2] 苏冬蔚, 连莉莉. 绿色信贷是否影响重污染企业的投融资行为?[J]. 金融研究, 2018(12): 123-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JRYJ201812008.htm [3] 王凤荣, 王康仕. "绿色"政策与绿色金融配置效率——基于中国制造业上市公司的实证研究[J]. 财经科学, 2018(5): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKX201805002.htm [4] 蔡海静, 汪祥耀, 谭超. 绿色信贷政策、企业新增银行借款与环保效应[J]. 会计研究, 2019(3): 88-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KJYJ201903012.htm [5] BARNEY J. Strategic factor markets: expectations, luck, and business strategy[J]. Management Science, 1986, 32(10): 1231-1241. doi: 10.1287/mnsc.32.10.1231 [6] JIN D, NIU M. The paradox of green credit in China[J]. Energy Procedia, 2011, 5(1): 1979-1986. http://www.sciencedirect.com/science/article/pii/S1876610211012768 [7] GUO. Financial policy innovation for social change: a case study of China's green credit policy[J]. International Review of Sociology, 2014, 24(1): 69-76. doi: 10.1080/03906701.2014.894347 [8] 蔡昉, 都阳, 王美艳. 经济发展方式转变与节能减排内在动力[J]. 经济研究, 2008(6): 4-11, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ200806006.htm [9] 周永圣, 梁淑慧, 刘淑芹, 等. 绿色信贷视角下建立绿色供应链的博弈研究[J]. 管理科学学报, 2017(12): 87-98. doi: 10.3969/j.issn.1007-9807.2017.12.007 [10] 蔡海静. 我国绿色信贷政策实施现状及其效果检验——基于造纸、采掘与电力行业的经验证据[J]. 财经论丛, 2013(1): 69-75. doi: 10.3969/j.issn.1004-4892.2013.01.011 [11] 陈立铭, 郭丽华, 张伟伟. 我国绿色信贷政策的运行机制及实施路径[J]. 当代经济研究, 2016(1): 91-96. doi: 10.3969/j.issn.1005-2674.2016.01.012 [12] 谢婷婷, 刘锦华. 绿色信贷如何影响中国绿色经济增长?[J]. 中国人口·资源与环境, 2019(9): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201909009.htm [13] SCHOLTENS BERT, LAMMERTJAN DAM. Banking on the equator. Are banks that adopted the equator principles different from non-adopters?[J]. World Development, 2007, 35(8): 1307-1328. doi: 10.1016/j.worlddev.2006.10.013 [14] BISWAS D. A study of conceptual framework on green banking[J]. Journal of Commerce and Management Thought, 2016, 7: 39-53. doi: 10.5958/0976-478X.2016.00003.3 [15] 孙光林, 王颖, 李庆海. 绿色信贷对商业银行信贷风险的影响[J]. 金融论坛, 2017(10): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJR201710006.htm [16] YUJUN C, SEAN G, OLAF W, et al. The impact of green lending on credit risk in China[J]. Sustainability, 2018, 10(6): 1-16. http://papers.ssrn.com/sol3/Delivery.cfm?abstractid=3196031 [17] ESHET A. Sustainable finance? the environmental impact of the 'equator principles' and the credit industry[J]. International Journal of Innovation & Sustainable Development, 2017, 11(2/3): 106-129. http://www.researchgate.net/publication/316001287_Sustainable_finance_The_environmental_impact_of_the_'equator_principles'_and_the_credit_industry [18] 廖筠, 胡伟娟, 杨丹丹. 绿色信贷对银行经营效率影响的动态分析——基于面板VAR模型[J]. 财经论丛, 2019(2): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLC201902007.htm [19] 何凌云, 吴晨, 钟章奇, 等. 绿色信贷、内外部政策及商业银行竞争力——基于9家上市商业银行的实证研究[J]. 金融经济学研究, 2018(1): 91-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JIRO201801009.htm [20] CILLIERS E J, DIEMONT E, STOBBELAAR D J, et al. Sustainable green urban planning: the green credit tool[J]. Journal of Place Management & Development, 2010, 3(1): 57-66. doi: 10.1108/17538331011030275 [21] 丁宁, 任亦侬, 左颖. 绿色信贷政策得不偿失还是得偿所愿?——基于资源配置视角的PSM-DID成本效率分析[J]. 金融研究, 2020(4): 112-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JRYJ202004007.htm [22] 连莉莉. 绿色信贷影响企业债务融资成本吗?——基于绿色企业与"两高"企业的对比研究[J]. 金融经济学研究, 2015(5): 83-93. https://www.cnki.com.cn/Article/CJFDTOTAL-JIRO201505007.htm [23] 王艳, 李善民. 社会信任是否会提升企业并购绩效?[J]. 管理世界, 2017(12): 125-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GLSJ201712016.htm [24] AIZAWA M, YANG C. Green credit, green stimulus, green revolution? China's mobilization of banks for environmental cleanup[J]. Journal of Environment & Development, 2010, 19(2): 119- 144. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=World%20Economics&atitle=Green%20Stimulus%2C%20Green%20Recovery%20and%20Global%20Imbalances [25] AINTABLIAN S, MCGRAW P A, ROBERTS G S. Bank monitoring and environmental risk[J]. Journal of Business Finance & Accounting, 2007, 34(1-2): 389-401. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=966479 [26] GREGORY ALAN. An examination of the long run performance of UK acquiring firms[J]. Journal of Business Finance and Accounting, 1997, 24(7-8): 971-1002. doi: 10.1111/1468-5957.00146/abstract [27] 宋贺, 段军山. 财务顾问与企业并购绩效[J]. 中国工业经济, 2019(5): 155-173. https://www.cnki.com.cn/Article/CJFDTOTAL-GGYY201905010.htm [28] 王小鲁, 樊纲, 余静文. 中国分省份市场化指数报告(2016)[M]. 北京: 社会科学文献出版社, 2017. [29] CHEN T, HARFORD J, LIN C. Do analysts matter for governance? evidence from natural experiments[J]. Journal of Financial Economics, 2015, 115(2): 383-410. [30] FRIED H O, LOVELL C A K, SCHMIDT S S, et al. Accounting for environmental effects and statistical noise in data envelopment analysis[J]. Journal of Productivity Analysis, 2002, 17(1-2): 157-74. [31] 李心丹, 朱洪亮, 张兵, 等. 基于DEA的上市公司并购效率研究[J]. 经济研究, 2003(10): 15-24, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ200310001.htm