Spatial Differentiation and Promotion Potential of Agricultural Eco-efficiency in China
-
摘要: 采用全局超效率SBM模型测算2001—2015年中国30个省市自治区的农业生态效率,并考察了中国农业生态效率的空间分异与提升潜力。研究发现:中国的农业生态效率普遍偏低,但整体呈持续上升趋势;各地区的农业生态效率呈“东西高、中部低”的空间格局和“高高集聚、低低集聚”的分布形态;三大地区分层方式对于农业生态效率空间分异的解释程度不足30%,要素效率等级分层方式对于空间分异的解释程度超过了60%;过多的农机动力、播种面积投入以及过量的农业碳排放是农业生态低效率的重要原因。因此,可以通过避免农机动力浪费、推进土地轮作休耕、加强农业碳排放管控等方式,协同提升区域农业生态效率。Abstract: The global super-efficient SBM model was used to measure the agricultural ecological efficiency of 30 provinces in China from 2001 to 2015, and to examine the spatial differentiation and potential for improvement of agricultural ecological efficiency in China. The results show that the agricultural eco-efficiency in China is generally low, but it is on the rise on the whole; the agricultural eco-efficiency of the eastern and western regions is higher than that of the central region, and the polarization characteristics become more obvious; the degree of the stratification of the three regions for the spatial differentiation of agricultural eco-efficiency is less than 30%, and the degree of the stratification of factor efficiency hierarchy for the spatial differentiation is more than 60%; excessive input of agricultural machinery power and planting area, and excessive agricultural carbon emissions are the important causes for agricultural ecological inefficiency. Therefore, regional agricultural eco-efficiency can be synergically enhanced by avoiding waste of agricultural machinery power, promoting land rotation and fallowing, and strengthening the control of agricultural carbon emission.
-
表 1 2001—2015年全国及三大区域投入产出指标的描述性统计
变量 平均值 平均增长率(%) 全国 东部 中部 西部 全国 东部 中部 西部 农膜 6.474 7.570 6.726 5.962 4.812 3.128 3.288 6.438 农药 5.228 5.905 8.323 2.605 2.496 0.814 3.090 4.576 机械 1 399.843 1 511.950 2 108.614 961.074 4.955 3.172 5.595 6.749 用水 66.926 52.632 73.554 76.219 -0.094 -1.006 0.103 0.396 化肥 169.293 161.098 253.404 127.665 2.667 0.826 2.964 4.041 能源 107.779 111.656 135.935 93.056 3.314 2.328 3.006 4.359 劳动力 551.851 409.131 732.432 533.526 -1.923 -2.497 -2.045 -1.484 土地 5 247.735 3 894.751 8 026.885 4 640.443 0.407 -0.400 0.668 0.981 总产出 626.447 732.238 810.663 462.229 4.328 3.857 4.531 5.213 碳排放 1 332.226 1 065.169 2 355.269 913.453 1.641 0.431 2.697 1.580 总氮 16.478 21.749 17.891 10.714 1.312 -0.015 1.937 3.139 总磷 1.004 0.928 1.754 0.605 3.061 1.182 3.251 3.993 表 2 三大地区分层方式对中国农业生态效率及各要素效率空间分异的驱动力
因变量 十五 十一五 十二五 全时期 农业生态效率 0.224**
(0.046)0.213*
(0.054)0.326**
(0.011)0.269**
(0.024)农膜利用效率 0.095
(0.269)0.010
(0.893)0.150
(0.212)0.027
(0.706)农药利用效率 0.326***
(0.007)0.324***
(0.007)0.144
(0.187)0.305***
(0.008)农业机械利用效率 0.197*
(0.072)0.221*
(0.054)0.298**
(0.018)0.243**
(0.038)农业用水效率 0.014
(0.838)0.093
(0.308)0.201*
(0.083)0.093
(0.317)化肥利用效率 0.278**
(0.018)0.272**
(0.021)0.358***
(0.005)0.334***
(0.008)能源利用效率 0.049
(0.523)0.050
(0.510)0.184*
(0.077)0.068
(0.390)劳动力投入效率 0.256**
(0.032)0.233**
(0.047)0.267**
(0.030)0.288**
(0.022)土地利用效率 0.229**
(0.049)0.287**
(0.023)0.357***
(0.008)0.324**
(0.013)二氧化碳排放效率 0.251**
(0.037)0.286**
(0.023)0.409***
(0.003)0.338***
(0.010)总氮排放效率 0.234**
(0.056)0.118
(0.216)0.238**
(0.034)0.167
(0.110)总磷排放 0.242**
(0.034)0.258**
(0.029)0.382***
(0.004)0.330***
(0.009)注:括号内为P值,用于检验q值是否显著。*、**、***分别表示在1%、5%、10%水平下显著。表 3同。 表 3 各要素效率等级分层方式对中国农业生态效率空间分异的驱动力(q值)
驱动因子 十五 十一五 十二五 全时期 农膜 0.304**
(0.029)0.390***
(0.006)0.402***
(0.006)0.440***
(0.002)农药 0.309***
(0.007)0.281**
(0.015)0.588***
(0.000)0.369***
(0.003)农业机械 0.758***
(0.000)0.793***
(0.000)0.875***
(0.000)0.821***
(0.000)用水 0.370
(0.190)0.398**
(0.017)0.573***
(0.000)0.471**
(0.020)化肥 0.730***
(0.000)0.683***
(0.000)0.619***
(0.000)0.593***
(0.002)能源 0.256*
(0.087)0.187*
(0.076)0.538***
(0.000)0.238**
(0.037)劳动力 0.562
(0.108)0.595***
(0.006)0.578***
(0.000)0.538**
(0.013)土地 0.641*
(0.094)0.762***
(0.000)0.826***
(0.000)0.737***
(0.004)碳排放 0.562***
(0.010)0.621**
(0.021)0.751***
(0.000)0.662***
(0.003)总氮 0.256*
(0.087)0.320
(0.152)0.321**
(0.029)0.299*
(0.099)总磷 0.378**
(0.018)0.449**
(0.028)0.748***
(0.000)0.412**
(0.028)表 4 全国及三大地区农业生态效率的提升潜力及各要素无效率省份的占比
% 地区 提升潜力 无效率省份的占比 东部 中部 西部 全国 东部 中部 西部 全国 农膜 0.967 2.480 1.406 1.532 48.000 65.556 56.364 58.222 农药 0.475 1.697 0.445 0.790 34.667 68.889 29.697 46.222 农机 2.101 4.239 2.453 2.800 70.667 97.778 83.636 83.778 用水 1.521 2.195 2.546 2.076 74.000 74.444 80.000 78.889 化肥 1.501 3.040 1.960 2.080 76.667 97.778 86.667 86.889 能源 0.824 1.954 1.140 1.241 40.000 45.556 52.121 51.556 劳动力 1.620 3.124 3.101 2.564 70.667 92.222 86.061 83.556 土地 2.005 3.933 3.122 2.929 74.667 97.778 86.667 86.222 碳排放 4.051 8.248 5.082 5.548 74.667 97.778 78.788 83.333 总氮 4.687 5.847 2.707 4.270 76.667 77.778 63.636 74.444 总磷 2.213 5.863 2.895 3.436 48.000 93.333 79.394 73.778 投入产出平均 1.997 3.875 2.442 2.661 62.606 82.626 71.185 73.354 投入平均 1.377 2.833 2.022 2.002 61.167 80.000 70.152 71.917 产出平均 3.650 6.653 3.561 4.418 66.444 89.630 73.939 77.185 -
[1] PICAZO-TADEO A J, GÓMEZ-LIMÓN J A, REIG-MARTÍNEZ E. Assessing farming eco-efficiency: a data envelopment analysis approach[J]. Journal of Environmental Management, 2011, 92(4): 1154-1164. doi: 10.1016/j.jenvman.2010.11.025 [2] HILL S B. Redesigning the food system for sustainability[J]. Alternatives, 1985, 12(3/4): 32-36. http://www.researchgate.net/publication/285538508_Redesigning_the_food_system_for_sustainability [3] PRETTY J, BENTON T G, BHARUCHA Z P, et al. Global assessment of agricultural system redesign for sustainable intensification[J]. Nature Sustainability, 2018, 1(8): 441-446. doi: 10.1038/s41893-018-0114-0 [4] 牛敏杰, 赵俊伟, 尹昌斌, 等. 我国农业生态文明水平评价及空间分异研究[J]. 农业经济问题, 2016(3): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-NJWT201603003.htm [5] HAN H, DING T, NIE L, et al. Agricultural eco-efficiency loss under technology heterogeneity given regional differences in China[J]. Journal of Cleaner Production, 2020, 250: 119511. doi: 10.1016/j.jclepro.2019.119511 [6] 聂弯, 于法稳. 农业生态效率研究进展分析[J]. 中国生态农业学报, 2017(9): 1371-1380. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201709023.htm [7] 郝睿. 经济效率与地区平等: 中国省际经济增长与差距的实证分析(1978-2003)[J]. 世界经济文汇, 2006(2): 11-29. doi: 10.3969/j.issn.0488-6364.2006.02.002 [8] HUANG J, XIA J, YU Y, et al. Composite eco-efficiency indicators for China based on data envelopment analysis[J]. Ecological Indicators, 2018, 85: 674-697. doi: 10.1016/j.ecolind.2017.10.040 [9] 田伟, 杨璐嘉, 姜静. 低碳视角下中国农业环境效率的测算与分析——基于非期望产出的SBM模型[J]. 中国农村观察, 2014(5): 59-71, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNCG201405007.htm [10] VLONTZOS G, NIAVIS S, MANOS B. A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 91-96. doi: 10.1016/j.rser.2014.07.153 [11] 刘应元, 冯中朝, 李鹏, 等. 中国生态农业绩效评价与区域差异[J]. 经济地理, 2014(3): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL201403005.htm [12] 郑德凤, 郝帅, 孙才志. 基于DEA-ESDA的农业生态效率评价及时空分异研究[J]. 地理科学, 2018(3): 419-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201803012.htm [13] PANG J, CHEN X, ZHANG Z, et al. Measuring eco-efficiency of agriculture in China[J]. Sustainability, 2016, 8(4): 398. doi: 10.3390/su8040398 [14] 侯孟阳, 姚顺波. 1978—2016年中国农业生态效率时空演变及趋势预测[J]. 地理学报, 2018(11): 2168-2183. doi: 10.11821/dlxb201811009 [15] 杜江, 王锐, 王新华. 环境全要素生产率与农业增长: 基于DEA-GML指数与面板Tobit模型的两阶段分析[J]. 中国农村经济, 2016(3): 65-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ201603008.htm [16] 王宝义, 张卫国. 中国农业生态效率的省际差异和影响因素——基于1996—2015年31个省份的面板数据分析[J]. 中国农村经济, 2018(1): 46-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ201801005.htm [17] XIE H, ZHANG Y, CHOI Y. Measuring the cultivated land use efficiency of the main grain-producing areas in China under the constraints of carbon emissions and agricultural nonpoint source pollution[J]. Sustainability, 2018, 10(6): 1932. doi: 10.3390/su10061932 [18] 潘丹, 应瑞瑶. 中国农业生态效率评价方法与实证——基于非期望产出的SBM模型分析[J]. 生态学报, 2013(12): 3837-3845. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201312030.htm [19] CECCHINI L, VENANZI S, PIERRI A, et al. Environmental efficiency analysis and estimation of CO2 abatement costs in dairy cattle farms in Umbria (Italy): a SBM-DEA model with undesirable output[J]. Journal of Cleaner Production, 2018, 197: 895-907. doi: 10.1016/j.jclepro.2018.06.165 [20] 黎新伍, 徐书彬. 中国农业供给结构失衡的测度及其空间特征研究[J]. 广东财经大学学报, 2020(4): 87-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SONG202004008.htm [21] COOPER W W, SEIFORD L M, TONE K. Data envelopment analysis[M]. 2rd. ed. Boston: Kluwer Academic Publishers, 2007. [22] PASTOR J T, LOVELL C A K. A global malmquist productivity index[J]. Economics Letters, 2005, 88(2): 266-271. doi: 10.1016/j.econlet.2005.02.013 [23] HUANG J, YANG X, CHENG G, et al. A comprehensive eco-efficiency model and dynamics of regional eco-efficiency in China[J]. Journal of Cleaner Production, 2014, 67: 228-238. doi: 10.1016/j.jclepro.2013.12.003 [24] TONE K. Dealing with undesirable outputs in DEA: a slacks-based measure (SBM) approach[R]. Tokyo: National Graduate Institute for Policy Studies, 2003. http://ci.nii.ac.jp/naid/110003481580 [25] HU J L, WANG S C. Total-factor energy efficiency of regions in China[J]. Energy Policy, 2006, 34(17): 3206-3217. doi: 10.1016/j.enpol.2005.06.015 [26] 刘华军, 乔列成, 孙淑惠. 黄河流域用水效率的空间格局及动态演进[J]. 资源科学, 2020(1): 57-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY202001007.htm [27] 杨骞, 刘鑫鹏, 王珏. 中国战略性新兴产业创新效率的测度及其分布动态[J]. 广东财经大学学报, 2020(2): 20-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SONG202002003.htm [28] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017(1): 116-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701011.htm [29] WANG J F, LI X H, CHRISTAKOS G, et al. Geographical detectors‐based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127. doi: 10.1080/13658810802443457 [30] 毕硕本, 计晗, 陈昌春, 等. 地理探测器在史前聚落人地关系研究中的应用与分析[J]. 地理科学进展, 2015(1): 118-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201501014.htm [31] 杨骞, 王珏, 李超, 等. 中国农业绿色全要素生产率的空间分异及其驱动因素[J]. 数量经济技术经济研究, 2019(10): 21-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY201910002.htm [32] CAO F, GE Y, WANG J F. Optimal discretization for geographical detectors-based risk assessment[J]. GIScience & Remote Sensing, 2013, 50(1): 78-92. doi: 10.1080/15481603.2013.778562 [33] 王明星, 李晶, 郑循华. 稻田甲烷排放及产生、转化、输送机理[J]. 大气科学, 1998(4): 218-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.019.htm [34] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011(8): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201108014.htm [35] 李波, 张俊飚, 李海鹏. 中国农业碳排放与经济发展的实证研究[J]. 干旱区资源与环境, 2011(12): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201112001.htm [36] 赖斯芸, 杜鹏飞, 陈吉宁. 基于单元分析的非点源污染调查评估方法[J]. 清华大学学报: 自然科学版, 2004(9): 1184-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200409008.htm [37] KUO H F, CHEN H L, TSOU K W. Analysis of farming environmental efficiency using a DEA model with undesirable outputs[J]. Apcbee Procedia, 2014, 10: 154-158. http://www.sciencedirect.com/science/article/pii/S2212670814001845