留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人口老龄化与技术进步: 凛冬将至吗——来自OECD国家的经验证据

邓翔 张卫 万春林

邓翔, 张卫, 万春林. 人口老龄化与技术进步: 凛冬将至吗——来自OECD国家的经验证据[J]. 广东财经大学学报, 2019, 34(6): 11-23.
引用本文: 邓翔, 张卫, 万春林. 人口老龄化与技术进步: 凛冬将至吗——来自OECD国家的经验证据[J]. 广东财经大学学报, 2019, 34(6): 11-23.
DENG Xiang, ZHANG Wei, WAN Chun-lin. Is Winter Coming in Population Aging and Technological Progress: Empirical Evidence from OECD Countries[J]. Journal of Guangdong University of Finance & Economics, 2019, 34(6): 11-23.
Citation: DENG Xiang, ZHANG Wei, WAN Chun-lin. Is Winter Coming in Population Aging and Technological Progress: Empirical Evidence from OECD Countries[J]. Journal of Guangdong University of Finance & Economics, 2019, 34(6): 11-23.

人口老龄化与技术进步: 凛冬将至吗——来自OECD国家的经验证据

基金项目: 国家自然科学基金项目(71673194)
详细信息
    作者简介:

    邓翔(1963-), 男, 四川营山人, 四川大学经济学院副院长, 教授, 博士生导师

    张卫(1989-), 男, 安徽固镇人, 四川大学经济学院博士研究生

    万春林(1987-), 男, 安徽无为人, 四川大学经济学院助理研究员, 博士

  • 中图分类号: F061.2;F273.1

Is Winter Coming in Population Aging and Technological Progress: Empirical Evidence from OECD Countries

  • 摘要: 在梳理人口老龄化与技术进步关系的基础上, 利用36个OECD成员国1990—2017年的跨国面板数据, 实证研究人口老龄化对技术进步的影响效应。结果表明: 现阶段人口老龄化对技术进步的影响显著为正, 其内在机制可能是家庭与企业对人口老龄化做出了最优回应, 使得人口老龄化对技术进步的正向效应高于其负向效应; 目前OECD国家的人口老龄化尚未阻碍其技术进步, 采用替换变量、反向因果识别等多种方法进行稳健性检验, 上述结论依然成立。这一结论有助于正确理解人口老龄化对技术进步的影响, 进而可减轻人口老龄化对技术进步的负面效应。
  • 图  1  1990年中国老龄化系数与全要素生产率

    注: 图1、图2中横轴参考线老龄化系数为7%,纵轴参考线全要素生产率为1;数据来源于《世界发展指标》和佩恩表9.1。

    图  2  2017年中国老龄化系数与全要素生产率

    注: 图1、图2中横轴参考线老龄化系数为7%,纵轴参考线全要素生产率为1;数据来源于《世界发展指标》和佩恩表9.1。

    图  3  人口老龄化影响技术进步的理论框架

    图  4  老年抚养比和全要素生产率

    注: 图4、图5中各变量均取对数,实线为拟合值,虚线为95%置信区间。

    图  5  老龄化系数和全要素生产率

    注图4、图5中各变量均取对数,实线为拟合值,虚线为95%置信区间。

    图  6  老年抚养比与TFP

    注:图6、图7中各变量均为残差形式; 非参数估计均使用伊潘科尼可夫(epanechnikov)核函数,基于拇指法则带宽估计法估计的最优带宽分别为0.06和0.05;图中浅色虚线部分为95%置信区间,黑色实线为相应的局部回归值。

    图  7  老年抚养比与WTFP

    注:图6、图7中各变量均为残差形式; 非参数估计均使用伊潘科尼可夫(epanechnikov)核函数,基于拇指法则带宽估计法估计的最优带宽分别为0.06和0.05;图中浅色虚线部分为95%置信区间,黑色实线为相应的局部回归值。

    表  1  各变量的描述性统计分析(N=1 008)

    变量 变量含义 均值 标准差 最小值 最大值
    TFP 全要素生产率 0.974 0.0982 0.640 1.224
    WTFP 与福利相关的全要素生产率 0.979 0.102 0.580 1.322
    OADR 老年抚养比(%) 21.47 5.776 7.532 45.03
    Age65 老龄化系数(%) 14.30 3.755 4.269 27.05
    y 实际人均国内生产总值(美元) 31 477 13 965 7 631 83 912
    k 实际人均物质资本存量(美元) 140 953 61 914 21 991 342 641
    Labor 劳动力人口占总人口比重(%) 66.64 2.391 56.68 73.36
    Urban 城市化水平(%) 75.44 11.15 47.91 97.96
    Open 进出口总额占GDP比重(%) 85.79 51.66 16.01 424.0
    Industry 工业增加值占GDP比重(%) 26.06 5.201 10.67 41.11
    HC 人力资本指数 3.129 0.396 1.802 3.807
    下载: 导出CSV

    表  2  人口老龄化对技术进步的影响

    变量 (1) (2) (3) (4) (5) (6)
    静态面板模型 动态面板模型
    RE FE RE FE Diff-GMM Sys-GMM
    L.lnTFP 0.731*** 0.816***
    (0.084) (0.066)
    lnAging 0.127 0.122 0.142* 0.153** 0.220** 0.135**
    (0.080) (0.080) (0.079) (0.075) (0.101) (0.057)
    lny 0.560*** 0.615*** 0.582*** 0.674*** 0.255*** 0.148***
    (0.064) (0.069) (0.063) (0.075) (0.080) (0.042)
    lnk -0.298*** -0.335*** -0.312*** -0.337*** -0.412*** -0.172***
    (0.097) (0.113) (0.097) (0.107) (0.092) (0.035)
    lnLabor -0.013 -0.186 -0.116 -0.411 0.646 0.405*
    (0.427) (0.383) (0.430) (0.366) (0.413) (0.240)
    lnUrban -0.299** -0.499** -0.314** -0.445* -0.219 0.028
    (0.137) (0.232) (0.142) (0.231) (0.275) (0.075)
    lnOpen 0.023 -0.004 0.022 0.009 0.043** 0.039***
    (0.027) (0.037) (0.027) (0.034) (0.020) (0.011)
    lnIndustry 0.006 0.034 -0.004 -0.005 0.013 -0.002
    (0.043) (0.038) (0.041) (0.043) (0.038) (0.031)
    lnHC -0.315* -0.127 -0.306* 0.042 0.162 -0.157
    (0.168) (0.304) (0.178) 0.124 (0.251) (0.106)
    Constant -1.075 0.206 -0.701 (1.709) -0.627 -1.711
    (1.825) (1.711) (1.905) (1.663) (1.990) (1.089)
    国家FE Yes Yes Yes Yes
    时间FE No No Yes Yes
    组内R-squared 0.699 0.705 0.723 0.736
    Hausman test 177.62*** 205.78***
    AR (1) 0.017 0.008
    AR (2) 0.393 0.111
    Sargan test 0.991 1.000
    Observations 1 008 1 008 1 008 1 008 936 972
    注:******分别表示在1%、5%和10%水平上显著;静态和动态面板回归模型括号内分别为稳健标准误和聚类稳健标准误;动态面板回归模型均为two-step; AR(1)、AR(2)和Sargan检验分别报告相应检验统计量的p值;L.表示变量滞后一期。下表同。
    下载: 导出CSV

    表  3  稳健性检验之替换变量和反向因果识别

    变量 (1) (2) (3) (4) (5) (6) (7)
    替换变量 反向因果识别
    WTFP TFP WTFP TFP TFP TFP TFP
    L.lnTC 0.734*** 0.810*** 0.725*** 0.811*** 0.792*** 0.745*** 0.753***
    (0.053) (0.067) (0.054) (0.057) (0.048) (0.054) (0.053)
    lnAging 0.188** 0.139*** 0.195***
    (0.074) (0.051) (0.068)
    L. lnAging 0.150*** 0.135**
    (0.045) (0.053)
    L2. lnAging 0.136** 0.134**
    (0.056) (0.056)
    lny 0.214*** 0.149*** 0.217*** 0.152*** 0.152*** 0.195*** 0.184***
    (0.058) (0.042) (0.063) (0.037) (0.036) (0.045) (0.045)
    lnk -0.220*** -0.172*** -0.229*** -0.165*** -0.154*** -0.192*** -0.173***
    (0.063) (0.033) (0.063) (0.028) (0.038) (0.041) (0.039)
    lnLabor 0.009** 0.335 0.464** 0.371** 0.269 0.308 0.226
    (0.004) (0.220) (0.192) (0.161) (0.259) (0.220) (0.193)
    lnUrban -0.058 0.029 -0.051 0.017 -0.025 0.015 -0.017
    (0.096) (0.078) (0.100) (0.083) (0.105) (0.088) (0.075)
    lnOpen 0.025 0.039*** 0.025 0.040*** 0.032* 0.043*** 0.044***
    (0.015) (0.010) (0.017) (0.011) (0.016) (0.013) (0.013)
    lnIndustry 0.081** -0.002 0.077* 0.004 0.007 0.005 0.002
    (0.040) (0.031) (0.040) (0.030) (0.033) (0.031) (0.030)
    lnHC -0.238* -0.173* -0.236 -0.214** -0.177* -0.203** -0.254**
    (0.135) (0.096) (0.154) (0.086) (0.096) (0.099) (0.121)
    Constant -0.622 -1.375 -1.872** -1.640** -1.085 -1.491 -1.001
    (0.379) (0.999) (0.736) (0.801) (1.246) (1.044) (0.886)
    AR(1) 0.007 0.008 0.007 0.008 0.006 0.008 0.009
    AR(2) 0.106 0.115 0.107 0.107 0.100 0.401 0.386
    Sargan test 1.000 1.000 1.000 1.000 1.000 1.000 1.000
    Observations 972 972 972 972 972 972 972
    注:L.和L2. 分别表示变量滞后一期和滞后二期。
    下载: 导出CSV

    表  4  增加控制变量后的稳健性检验

    变量 (1) (2) (3) (4) (5)
    增加控制变量
    L.lnTC 0.817***(0.071) 0.836***(0.075) 0.761***(0.064) 0.814***(0.073) 0.823***(0.077)
    lnAging 0.142**(0.056) 0.136***(0.053) 0.223**(0.095) 0.192**(0.079) 0.178**(0.087)
    其他控制变量 Yes Yes Yes Yes Yes
    lnTax -0.001(0.015) 0.002(0.018) -0.002(0.016) -0.002(0.012) -0.002(0.014)
    lnPopulation 0.005(0.007) 0.011(0.015) 0.006(0.008) 0.003(0.008)
    lnSave 0.057**(0.027) 0.053**(0.027) 0.057*(0.030)
    lnEducation -0.029(0.018) -0.027(0.018)
    lnLifexp 0.255(0.280)
    Constant -1.818*(1.073) -1.611(1.362) -3.311*(1.926) -2.657(1.665) -3.324*(1.932)
    AR (1) 0.009 0.006 0.012 0.012 0.011
    AR (2) 0.112 0.117 0.107 0.091 0.116
    Sargan test 1.000 1.000 1.000 1.000 1.000
    Observations 972 972 972 972 972
    下载: 导出CSV

    表  5  稳健性检验之自助法和非线性估计

    变量 (1) (2) (3) (4)
    自助法估计 非线性检验
    L.lnTC 0.840***(0.067) 0.791***(0.079)
    lnAging 0.039**(0.018) 0.039**(0.018) 0.007(1.545) 0.065(0.955)
    (lnAging)2 0.020(0.265) 0.021(0.190)
    lny 0.189***(0.019) 0.189***(0.019) 0.135***(0.041) 0.151***(0.044)
    lnk -0.066***(0.019) -0.066***(0.019) -0.159***(0.029) -0.175***(0.047)
    lnLabor 0.066(0.120) 0.027(0.113) 0.362(0.486) 0.409(0.441)
    lnUrban 0.068***(0.025) 0.068***(0.025) 0.033(0.083) 0.039(0.099)
    lnOpen 0.002(0.006) 0.002(0.006) 0.037**(0.016) 0.035***(0.013)
    lnIndustry 0.005(0.017) 0.005(0.017) 0.010(0.035) 0.023(0.029)
    lnHC -0.298***(0.027) -0.298***(0.027) -0.147**(0.058) -0.231**(0.094)
    Constant -1.574***(0.540) -1.394***(0.509) -1.423(0.955) -1.669(1.270)
    AR(1) 0.005 0.009
    AR(2) 0.100 0.138
    Sargan test 1.000 1.000
    自助样本 500 500
    Observations 972 972
    注:自助法估计模型括号内为使用自助法得到的标准误。
    下载: 导出CSV
  • [1] 邓翔, 张卫. 人口老龄化会阻碍技术进步吗?——来自中国2000-2014年的经验证据[J]. 华中科技大学学报: 社会科学版, 2018(3): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLS201803006.htm
    [2] BECKER G S, LEWIS HG. On the interaction between the quantity and quality of children[J]. Journal of political economy, 1973, 81(2): 279-288. doi: 10.1086/260166
    [3] STRULIK H, PRETTNER K, PRSKAWETZ A. The past and future of knowledge-based growth[J]. Journal of economic growth, 2013, 18(4): 411-437. doi: 10.1007/s10887-013-9098-9
    [4] ASHRAF QH, WEIL D N, WILDE J. The effect of fertility reduction on economic growth[J]. Population and development review, 2013, 39(1): 97-130. doi: 10.1111/j.1728-4457.2013.00575.x
    [5] KOTSCHY R, SUNDE U. Can education compensate the effect of population aging on macroeconomic performance?[J]. Economic policy, 2018, 33(96): 587-634. doi: 10.1093/epolic/eiy011
    [6] HSU M, LIAO P J, ZHAO M. Demographic change and long-term growth in China: past developments and the future challenge of aging[J]. Review of development economics, 2018, 22(3): 928-952. doi: 10.1111/rode.12405
    [7] CERVELLATI M, SUNDE U, ZIMMERMANN K F. Demographic dynamics and long-run development: insights for the secular stagnation debate[J]. Journal of population economics, 2017, 30(2): 401-432. doi: 10.1007/s00148-016-0626-8
    [8] 呼倩. 中国人口老龄化的劳动供给效应——基于省级面板数据的分析[J]. 广东财经大学学报, 2019(4): 33-48. http://gdcjdxxb.xml-journal.net/article/id/2b1f2ca1-50b3-4b0f-a647-fe55d8010f3a
    [9] 刘永平, 陆铭. 从家庭养老角度看老龄化的中国经济能否持续增长[J]. 世界经济, 2008(1): 65-77. doi: 10.3969/j.issn.1002-9621.2008.01.007
    [10] MASON A, LEE R, JIANG J X. Demographic dividends, human capital, and saving[J]. Journal of the economics of ageing, 2016, 7: 106-122. doi: 10.1016/j.jeoa.2016.02.004
    [11] GEHRINGER A, PRETTNER K. Longevity and technological change[J]. Macroeconomic dynamics, 2019, 23(4): 1471-1503. doi: 10.1017/S1365100517000293
    [12] IZMIRLIOGLU Y. The impact of population ageing on technological progress and TFP growth, with application to United States: 1950-2050[R]. MPRA Working Paper, 2008: No. 24687.
    [13] FUTAGAMI K, KONISHI K. Rising longevity, fertility dynamics, and R & D-based growth[J]. Journal of population economics, 2019, 32(2): 591-620. doi: 10.1007/s00148-018-0691-2
    [14] HEER B, IRMEN A. Population, pensions, and endogenous economic growth[J]. Journal of economic dynamics & control, 2014, 46(11): 50-72. http://www.sciencedirect.com/science/article/pii/S016518891400150X
    [15] ACEMOGLU D, RESTREPO P. Secular stagnation?the effect of aging on economic growth in the age of automation[J]. American economic review, 2017, 107(5): 174-179. doi: 10.1257/aer.p20171101
    [16] ACEMOGLU D, RESTREPO P. Demographics and automation[R]. NBER Working Paper, 2018: 24421.
    [17] IRMEN A. Capital-andlabor-savingtechnicalchange in an aging economy[J]. International economic review, 2017, 58(1): 261-285. doi: 10.1111/iere.12216
    [18] CHOMIK R, PIGGOTT J. Demographic and technological change: two megatrends shaping the labourmarket in Asia[R]. ARC Centre of Excellence in Population Ageing Research Working Paper, 2018.
    [19] NODA H. The inhibitory effect of population ageing on technical progress research group of economics and management[R]. Yamagata University Flss Discussion Paper Series, 2010: 2010-E02.
    [20] JONES B, REEDY E J, WEINBERG B A. Age and scientific genius[R]. NBER Working Paper, 2014: 19866.
    [21] LIANG J, WANG H, LAZEAR E P. Demographics and entrepreneurship[J]. Journal of political economy, 2018, 126(S1): S140-S196. doi: 10.1086/698750
    [22] KREMERM. Population growth and technological change: one million B. C. to 1990[J]. Quarterly journal of economics, 1993, 108(3): 681-716. doi: 10.2307/2118405
    [23] IRMEN I, LITINA A. Population aging and inventive activity[R]. CESifo Working Paper Series, 2016: No. 5841.
    [24] 郭凯明, 余静雯, 龚六堂. 人口转变、企业家精神与经济增长[J]. 经济学(季刊), 2016(3): 989-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-JJXU201603007.htm
    [25] 姚东旻, 宁静, 韦诗言. 老龄化如何影响科技创新[J]. 世界经济, 2017(4): 105-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SJJJ201704006.htm
    [26] 范洪敏, 穆怀中. 人口老龄化对环境质量的影响机制研究[J]. 广东财经大学学报, 2017(2): 41-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SONG201702004.htm
    [27] FEENSTRA R C, INKLAARR, TIMMERM P. The next generation of the Penn World Table[J]. American economic review, 2015, 105(10): 3150-3182. doi: 10.1257/aer.20130954
    [28] EFRON B. Bootstrapping methods: another look at the jackknife[J]. Annals of statistics, 1979, 7(1): 1-26.
    [29] 程惠芳, 陆嘉俊. 知识资本对工业企业全要素生产率影响的实证分析[J]. 经济研究, 2014(5): 174-187. https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ201405014.htm
    [30] MARKUS B, CICCONE A. Rain and the democratic window of opportunity[J]. Econometrica, 2011, 79(3): 923-947. doi: 10.3982/ECTA8183
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  145
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-19
  • 网络出版日期:  2021-05-27
  • 刊出日期:  2021-05-27

目录

    /

    返回文章
    返回